Numerical Optimization with Computational Errors

This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zaslavski, Alexander J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Optimization and Its Applications, 108
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03623nam a22005415i 4500
001 978-3-319-30921-7
003 DE-He213
005 20160422112438.0
007 cr nn 008mamaa
008 160422s2016 gw | s |||| 0|eng d
020 |a 9783319309217  |9 978-3-319-30921-7 
024 7 |a 10.1007/978-3-319-30921-7  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Zaslavski, Alexander J.  |e author. 
245 1 0 |a Numerical Optimization with Computational Errors  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 304 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 108 
505 0 |a 1. Introduction -- 2. Subgradient Projection Algorithm -- 3. The Mirror Descent Algorithm -- 4. Gradient Algorithm with a Smooth Objective Function -- 5. An Extension of the Gradient Algorithm -- 6. Weiszfeld's Method -- 7. The Extragradient Method for Convex Optimization -- 8. A Projected Subgradient Method for Nonsmooth Problems -- 9. Proximal Point Method in Hilbert Spaces -- 10. Proximal Point Methods in Metric Spaces -- 11. Maximal Monotone Operators and the Proximal Point Algorithm -- 12. The Extragradient Method for Solving Variational Inequalities -- 13. A Common Solution of a Family of Variational Inequalities -- 14. Continuous Subgradient Method -- 15. Penalty Methods -- 16. Newton's method -- References -- Index. . 
520 |a This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Operations Research, Management Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319309200 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 108 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30921-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)