Rigid Cohomology over Laurent Series Fields

In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lazda, Christopher (Συγγραφέας), Pál, Ambrus (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Algebra and Applications, 21
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03339nam a22004695i 4500
001 978-3-319-30951-4
003 DE-He213
005 20160427131929.0
007 cr nn 008mamaa
008 160427s2016 gw | s |||| 0|eng d
020 |a 9783319309514  |9 978-3-319-30951-4 
024 7 |a 10.1007/978-3-319-30951-4  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Lazda, Christopher.  |e author. 
245 1 0 |a Rigid Cohomology over Laurent Series Fields  |h [electronic resource] /  |c by Christopher Lazda, Ambrus Pál. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 267 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 1572-5553 ;  |v 21 
505 0 |a Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index. 
520 |a In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Pál, Ambrus.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319309507 
830 0 |a Algebra and Applications,  |x 1572-5553 ;  |v 21 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30951-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)