Writing Proofs in Analysis

This is a textbook on proof writing in the area of analysis, balancing a survey of the core concepts of mathematical proof with a tight, rigorous examination of the specific tools needed for an understanding of analysis. Instead of the standard "transition" approach to teaching proofs, whe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kane, Jonathan M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03024nam a22004575i 4500
001 978-3-319-30967-5
003 DE-He213
005 20160528142540.0
007 cr nn 008mamaa
008 160528s2016 gw | s |||| 0|eng d
020 |a 9783319309675  |9 978-3-319-30967-5 
024 7 |a 10.1007/978-3-319-30967-5  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Kane, Jonathan M.  |e author. 
245 1 0 |a Writing Proofs in Analysis  |h [electronic resource] /  |c by Jonathan M. Kane. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XX, 347 p. 79 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a What Are Proofs, And Why Do We Write Them? -- The Basics of Proofs -- Limits -- Continuity -- Derivatives -- Riemann Integrals -- Infinite Series -- Sequences of Functions -- Topology of the Real Line -- Metric Spaces . 
520 |a This is a textbook on proof writing in the area of analysis, balancing a survey of the core concepts of mathematical proof with a tight, rigorous examination of the specific tools needed for an understanding of analysis. Instead of the standard "transition" approach to teaching proofs, wherein students are taught fundamentals of logic, given some common proof strategies such as mathematical induction, and presented with a series of well-written proofs to mimic, this textbook teaches what a student needs to be thinking about when trying to construct a proof. Covering the fundamentals of analysis sufficient for a typical beginning Real Analysis course, it never loses sight of the fact that its primary focus is about proof writing skills. This book aims to give the student precise training in the writing of proofs by explaining exactly what elements make up a correct proof, how one goes about constructing an acceptable proof, and, by learning to recognize a correct proof, how to avoid writing incorrect proofs. To this end, all proofs presented in this text are preceded by detailed explanations describing the thought process one goes through when constructing the proof. Over 150 example proofs, templates, and axioms are presented alongside full-color diagrams to elucidate the topics at hand. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319309651 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30967-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)