Topics in Banach Space Theory

This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second ed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Albiac, Fernando (Συγγραφέας), Kalton, Nigel J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:2nd ed. 2016.
Σειρά:Graduate Texts in Mathematics, 233
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04503nam a22004575i 4500
001 978-3-319-31557-7
003 DE-He213
005 20160719095601.0
007 cr nn 008mamaa
008 160719s2016 gw | s |||| 0|eng d
020 |a 9783319315577  |9 978-3-319-31557-7 
024 7 |a 10.1007/978-3-319-31557-7  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Albiac, Fernando.  |e author. 
245 1 0 |a Topics in Banach Space Theory  |h [electronic resource] /  |c by Fernando Albiac, Nigel J. Kalton. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XX, 508 p. 23 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 233 
505 0 |a 1. Bases and Basic Sequences -- 2. The Classical Sequence Spaces -- 3. Special Types of Bases -- 4. Banach Spaces of Continuous Functions -- 5. L_{1}(\mu )-Spaces and \mathcal C(K)-Spaces -- 6. The Spaces L_{p} for 1\le p<\infty -- 7. Factorization Theory -- 8. Absolutely Summing Operators -- 9. Perfectly Homogeneous Bases and Their Applications -- 10. Greedy-type Bases -- 11. \ell _p-Subspaces of Banach Spaces -- 12. Finite Representability of \ell _p-Spaces -- 13. An Introduction to Local Theory -- 14. Nonlinear Geometry of Banach Spaces -- 15. Important Examples of Banach Spaces -- Appendix A Normed Spaces and Operators -- Appendix B Elementary Hilbert Space Theory -- Appendix C Duality in L_{p}(\mu ): H\"older's inequality related results -- Appendix D Main Features of Finite-Dimensional Spaces -- Appendix E Cornerstone Theorems of Functional Analysis -- Appendix F Convex Sets and Extreme Points -- Appendix G The Weak Topologies -- Appendix H Weak Compactness of Sets and Operators -- Appendix I Basic probability in use -- Appendix J Generalities on Ultraproducts -- Appendix K The Bochner Integral abridged -- List of Symbols -- References -- Index. 
520 |a This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book…succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly… It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments… I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book…" —Gilles Godefroy, Mathematical Reviews. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
700 1 |a Kalton, Nigel J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319315553 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 233 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-31557-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)