Arthur's Invariant Trace Formula and Comparison of Inner Forms

This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult sub...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Flicker, Yuval Z. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03087nam a22005055i 4500
001 978-3-319-31593-5
003 DE-He213
005 20160914174713.0
007 cr nn 008mamaa
008 160914s2016 gw | s |||| 0|eng d
020 |a 9783319315935  |9 978-3-319-31593-5 
024 7 |a 10.1007/978-3-319-31593-5  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Flicker, Yuval Z.  |e author. 
245 1 0 |a Arthur's Invariant Trace Formula and Comparison of Inner Forms  |h [electronic resource] /  |c by Yuval Z. Flicker. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XI, 567 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Local Theory -- Arthur's Noninvariant Trace Formula -- Study of Non-Invariance -- The Invariant Trace Formula -- Main Comparison. 
520 |a This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form G and for functions with matching orbital integrals. Arthur’s Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319315911 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-31593-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)