Data Science and Big Data Computing Frameworks and Methodologies /

This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by an authoritative collection of thirty-six researchers and practitioners from around the world, discussing research developments an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mahmood, Zaigham (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Data Science Applications and Scenarios
  • An Interoperability Framework and Distributed Platform for Fast Data Applications
  • Complex Event Processing Framework for Big Data Applications
  • Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios
  • Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspective
  • Part II: Big Data Modelling and Frameworks
  • A Unified Approach to Data Modelling and Management in Big Data Era
  • Interfacing Physical and Cyber Worlds: A Big Data Perspective
  • Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data
  • An Analytics Driven Approach to Identify Duplicate Bug Records in Large Data Repositories
  • Part III: Big Data Tools and Analytics
  • Large Scale Data Analytics Tools: Apache Hive, Pig and HBase
  • Big Data Analytics: Enabling Technologies and Tools
  • A Framework for Data Mining and Knowledge Discovery in Cloud Computing
  • Feature Selection for Adaptive Decision Making in Big Data Analytics
  • Social Impact and Social Media Analysis Relating to Big Data.