Data Science and Big Data Computing Frameworks and Methodologies /
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by an authoritative collection of thirty-six researchers and practitioners from around the world, discussing research developments an...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I: Data Science Applications and Scenarios
- An Interoperability Framework and Distributed Platform for Fast Data Applications
- Complex Event Processing Framework for Big Data Applications
- Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios
- Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspective
- Part II: Big Data Modelling and Frameworks
- A Unified Approach to Data Modelling and Management in Big Data Era
- Interfacing Physical and Cyber Worlds: A Big Data Perspective
- Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data
- An Analytics Driven Approach to Identify Duplicate Bug Records in Large Data Repositories
- Part III: Big Data Tools and Analytics
- Large Scale Data Analytics Tools: Apache Hive, Pig and HBase
- Big Data Analytics: Enabling Technologies and Tools
- A Framework for Data Mining and Knowledge Discovery in Cloud Computing
- Feature Selection for Adaptive Decision Making in Big Data Analytics
- Social Impact and Social Media Analysis Relating to Big Data.