Pancyclic and Bipancyclic Graphs

This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from...

Full description

Bibliographic Details
Main Authors: George, John C. (Author), Khodkar, Abdollah (Author), Wallis, W.D (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03046nam a22005055i 4500
001 978-3-319-31951-3
003 DE-He213
005 20160530140549.0
007 cr nn 008mamaa
008 160518s2016 gw | s |||| 0|eng d
020 |a 9783319319513  |9 978-3-319-31951-3 
024 7 |a 10.1007/978-3-319-31951-3  |2 doi 
040 |d GrThAP 
050 4 |a QA166-166.247 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT013000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
100 1 |a George, John C.  |e author. 
245 1 0 |a Pancyclic and Bipancyclic Graphs  |h [electronic resource] /  |c by John C. George, Abdollah Khodkar, W.D. Wallis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 108 p. 64 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1.Graphs -- 2. Degrees and Hamiltoneity -- 3. Pancyclicity -- 4. Minimal Pancyclicity -- 5. Uniquely Pancyclic Graphs -- 6. Bipancyclic Graphs -- 7. Uniquely Bipancyclic Graphs -- 8. Minimal Bipancyclicity -- References. . 
520 |a This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length? 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Graph Theory. 
650 2 4 |a Combinatorics. 
650 2 4 |a Numerical Analysis. 
700 1 |a Khodkar, Abdollah.  |e author. 
700 1 |a Wallis, W.D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319319506 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-31951-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)