From Particle Systems to Partial Differential Equations III Particle Systems and PDEs III, Braga, Portugal, December 2014 /

The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gonçalves, Patrícia (Επιμελητής έκδοσης), Soares, Ana Jacinta (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Proceedings in Mathematics & Statistics, 162
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Convergence of Diffusion-Drift Many Particle Systems in Probability under a Sobolev Norm
  • Global asymptotic stability of a general nonautonomous Cohen-Grossberg model with unbounded amplification functions
  • Modelling of systems with a dispersed phase: “measuring” small sets in the presence of elliptic operators
  • From market data to agent-based models and stochastic differential equations
  • Entropy dissipation estimates for the Landau equation: General cross sections
  • Phase transitions and coarse-graining for a system of particles in the continuum
  • Sub–shock formation in reacting gas mixtures
  • The gradient flow approach to hydrodynamic limits for the simple exclusion process
  • The gradient flow approach to hydrodynamic limits for the simple exclusion process
  • Hydrodynamic limit of quantum random walks
  • Derivation of the Boltzmann equation: hard spheres, short-range potentials and beyond
  • Duality relations for the periodic ASEP conditioned on a low current
  • Asymptotics for FBSDES with Jumps and Connections with Partial Integral Differential Equations
  • The Boltzmann Equation over RD: Dispersion vs Dissipation.