Computational Modeling of Neural Activities for Statistical Inference

This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over obse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kolossa, Antonio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02859nam a22005055i 4500
001 978-3-319-32285-8
003 DE-He213
005 20160512081239.0
007 cr nn 008mamaa
008 160512s2016 gw | s |||| 0|eng d
020 |a 9783319322858  |9 978-3-319-32285-8 
024 7 |a 10.1007/978-3-319-32285-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.87 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Kolossa, Antonio.  |e author. 
245 1 0 |a Computational Modeling of Neural Activities for Statistical Inference  |h [electronic resource] /  |c by Antonio Kolossa. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIV, 127 p. 42 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basic Principles of ERP Research, Surprise, and Probability Estimation -- Introduction to Model Estimation and Selection Methods -- A New Theory of Trial-by-Trial P300 Amplitude Fluctuations -- Bayesian Inference and the Urn-Ball Task -- Summary and Outlook. 
520 |a This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. . 
650 0 |a Mathematics. 
650 0 |a Neurosciences. 
650 0 |a Computer simulation. 
650 0 |a Neural networks (Computer science). 
650 0 |a Biomathematics. 
650 0 |a Biomedical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Biomedical Engineering. 
650 2 4 |a Neurosciences. 
650 2 4 |a Physiological, Cellular and Medical Topics. 
650 2 4 |a Simulation and Modeling. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319322841 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-32285-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)