From Curve Fitting to Machine Learning An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /

This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algori...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zielesny, Achim (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:2nd ed. 2016.
Σειρά:Intelligent Systems Reference Library, 109
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04098nam a22005775i 4500
001 978-3-319-32545-3
003 DE-He213
005 20160413163404.0
007 cr nn 008mamaa
008 160413s2016 gw | s |||| 0|eng d
020 |a 9783319325453  |9 978-3-319-32545-3 
024 7 |a 10.1007/978-3-319-32545-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Zielesny, Achim.  |e author. 
245 1 0 |a From Curve Fitting to Machine Learning  |h [electronic resource] :  |b An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /  |c by Achim Zielesny. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 498 p. 343 illus., 200 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 109 
505 0 |a Introduction -- Curve Fitting -- Clustering -- Machine Learning -- Discussion -- CIP -Computational Intelligence Packages. 
520 |a This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence. All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source and the detailed code used throughout the book is freely accessible. The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction. Readers with programming skills may easily port or customize the provided code. "'From curve fitting to machine learning' is ... a useful book. ... It contains the basic formulas of curve fitting and related subjects and throws in, what is missing in so many books, the code to reproduce the results. All in all this is an interesting and useful book both for novice as well as expert readers. For the novice it is a good introductory book and the expert will appreciate the many examples and working code." Leslie A. Piegl (Review of the first edition, 2012). 
650 0 |a Computer science. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319325446 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 109 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-32545-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)