Asymptotic Expansion of a Partition Function Related to the Sinh-model

This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Borot, Gaëtan (Συγγραφέας), Guionnet, Alice (Συγγραφέας), Kozlowski, Karol K. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Mathematical Physics Studies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03544nam a22005775i 4500
001 978-3-319-33379-3
003 DE-He213
005 20171214112229.0
007 cr nn 008mamaa
008 161210s2016 gw | s |||| 0|eng d
020 |a 9783319333793  |9 978-3-319-33379-3 
024 7 |a 10.1007/978-3-319-33379-3  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Borot, Gaëtan.  |e author. 
245 1 0 |a Asymptotic Expansion of a Partition Function Related to the Sinh-model  |h [electronic resource] /  |c by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 222 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Physics Studies,  |x 0921-3767 
505 0 |a Introduction -- Main results and strategy of proof -- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach -- The Riemann–Hilbert approach to the inversion of SN -- The operators WN and U-1N -- Asymptotic analysis of integrals -- Several theorems and properties of use to the analysis -- Proof of Theorem 2.1.1 -- Properties of the N-dependent equilibrium measure -- The Gaussian potential -- Summary of symbols. 
520 |a This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core  aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields. 
650 0 |a Mathematics. 
650 0 |a Potential theory (Mathematics). 
650 0 |a System theory. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Potential Theory. 
650 2 4 |a Complex Systems. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
700 1 |a Guionnet, Alice.  |e author. 
700 1 |a Kozlowski, Karol K.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319333786 
830 0 |a Mathematical Physics Studies,  |x 0921-3767 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-33379-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)