Asymptotic Expansion of a Partition Function Related to the Sinh-model
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Mathematical Physics Studies,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Main results and strategy of proof
- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach
- The Riemann–Hilbert approach to the inversion of SN
- The operators WN and U-1N
- Asymptotic analysis of integrals
- Several theorems and properties of use to the analysis
- Proof of Theorem 2.1.1
- Properties of the N-dependent equilibrium measure
- The Gaussian potential
- Summary of symbols.