Machine Learning for Evolution Strategies

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kramer, Oliver (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Studies in Big Data, 20
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02791nam a22005415i 4500
001 978-3-319-33383-0
003 DE-He213
005 20160525133543.0
007 cr nn 008mamaa
008 160525s2016 gw | s |||| 0|eng d
020 |a 9783319333830  |9 978-3-319-33383-0 
024 7 |a 10.1007/978-3-319-33383-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kramer, Oliver.  |e author. 
245 1 0 |a Machine Learning for Evolution Strategies  |h [electronic resource] /  |c by Oliver Kramer. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 124 p. 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 20 
505 0 |a Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning. 
520 |a This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Sociophysics. 
650 0 |a Econophysics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Socio- and Econophysics, Population and Evolutionary Models. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319333816 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 20 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-33383-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)