Geometry and Dynamics of Integrable Systems

Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bolsinov, Alexey (Συγγραφέας), Morales-Ruiz, Juan J. (Συγγραφέας), Zung, Nguyen Tien (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Miranda, Eva (Επιμελητής έκδοσης), Matveev, Vladimir (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Advanced Courses in Mathematics - CRM Barcelona,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03298nam a22005655i 4500
001 978-3-319-33503-2
003 DE-He213
005 20161028075302.0
007 cr nn 008mamaa
008 161028s2016 gw | s |||| 0|eng d
020 |a 9783319335032  |9 978-3-319-33503-2 
024 7 |a 10.1007/978-3-319-33503-2  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Bolsinov, Alexey.  |e author. 
245 1 0 |a Geometry and Dynamics of Integrable Systems  |h [electronic resource] /  |c by Alexey Bolsinov, Juan J. Morales-Ruiz, Nguyen Tien Zung ; edited by Eva Miranda, Vladimir Matveev. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a VIII, 140 p. 22 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0304 
505 0 |a Integrable Systems and Differential Galois Theory -- Singularities of bi-Hamiltonian Systems and Stability Analysis -- Geometry of Integrable non-Hamiltonian Systems. 
520 |a Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mirror symmetry). As such, the book will appeal to experts with a wide range of backgrounds. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Field Theory and Polynomials. 
700 1 |a Morales-Ruiz, Juan J.  |e author. 
700 1 |a Zung, Nguyen Tien.  |e author. 
700 1 |a Miranda, Eva.  |e editor. 
700 1 |a Matveev, Vladimir.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319335025 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0304 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-33503-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)