The Parabolic Anderson Model Random Walk in Random Potential /

This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-valu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: König, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Pathways in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02955nam a22005055i 4500
001 978-3-319-33596-4
003 DE-He213
005 20160610082252.0
007 cr nn 008mamaa
008 160610s2016 gw | s |||| 0|eng d
020 |a 9783319335964  |9 978-3-319-33596-4 
024 7 |a 10.1007/978-3-319-33596-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a König, Wolfgang.  |e author. 
245 1 4 |a The Parabolic Anderson Model  |h [electronic resource] :  |b Random Walk in Random Potential /  |c by Wolfgang König. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XI, 192 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pathways in Mathematics,  |x 2367-3451 
505 0 |a 1 Background, model and questions -- 2 Tools and concepts -- 3 Moment asymptotics for the total mass -- 4 Some proof techniques -- 5 Almost sure asymptotics for the total mass -- 6 Strong intermittency -- 7 Refined questions -- 8 Time-dependent potentials. 
520 |a This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319335957 
830 0 |a Pathways in Mathematics,  |x 2367-3451 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-33596-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)