Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Studies in Computational Intelligence,
649 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Fixed Point Results and Applications in Left Multivariate Fractional Calculus
- Fixed Point Results and Applications in Right Multivariate Fractional Calculus
- Semi-local Iterative Procedures and Applications In K-Multivariate Fractional Calculus
- Newton-like Procedures and Applications in Multivariate Fractional Calculus
- Implicit Iterative Algorithms and Applications in Multivariate Calculus
- Monotone Iterative Schemes and Applications in Fractional Calculus
- Extending the Convergence Domain of Newton’s Method
- The Left Multidimensional Riemann-Liouville Fractional Integral
- The Right Multidimensional Riemann-Liouville Fractional Integral.