Spectral Theory of Infinite-Area Hyperbolic Surfaces

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural set...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Borthwick, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Έκδοση:2nd ed. 2016.
Σειρά:Progress in Mathematics, 318
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Hyperbolic Surfaces
  • Selberg Theory for Finite-Area Hyperbolic Surfaces
  • Spectral Theory for the Hyperbolic Plane
  • Model Resolvents for Cylinders
  • The Resolvent
  • Spectral and Scattering Theory
  • Resonances and Scattering Poles
  • Growth Estimates and Resonance Bounds
  • Selberg Zeta Function
  • Wave Trace and Poisson Formula
  • Resonance Asymptotics
  • Inverse Spectral Geometry
  • Patterson-Sullivan Theory
  • Dynamical Approach to the Zeta Function
  • Numerical Computations
  • Appendix
  • References
  • Notation Guide
  • Index.