Adaptive Regression for Modeling Nonlinear Relationships

This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Knafl, George J. (Συγγραφέας), Ding, Kai (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05140nam a22004815i 4500
001 978-3-319-33946-7
003 DE-He213
005 20160920125056.0
007 cr nn 008mamaa
008 160920s2016 gw | s |||| 0|eng d
020 |a 9783319339467  |9 978-3-319-33946-7 
024 7 |a 10.1007/978-3-319-33946-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Knafl, George J.  |e author. 
245 1 0 |a Adaptive Regression for Modeling Nonlinear Relationships  |h [electronic resource] /  |c by George J. Knafl, Kai Ding. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXV, 372 p. 57 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 1431-8776 
505 0 |a Introduction -- Adaptive Regression Modeling of Univariate Continuous Outcomes -- Adaptive Regression Modeling of Univariate Continuous Outcomes in SAS -- Adaptive Regression Modeling of Multivariate Continuous Outcomes -- Adaptive Regression Modeling of Multivariate Continuous Outcomes in SAS -- Adaptive Transformation of Positive Valued Continuous Outcomes -- Adaptive Logistic Regression Modeling of Univariate Dichotomous and Polytomous Outcomes -- Adaptive Logistic Regression Modeling of Univariate Dichotomous and Polytomous Outcomes in SAS -- Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes -- Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes in SAS -- Adaptive Poisson Regression Modeling of Univariate Count Outcomes -- Adaptive Poisson Regression Modeling of Univariate Count Outcomes in SAS -- Adaptive Poisson Regression Modeling of Multivariate Count Outcomes -- Adaptive Poisson Regression Modeling of Multivariate Count Outcomes in SAS -- Generalized Additive Modeling -- Generalized Additive Modeling in SAS -- Multivariate Adaptive Regression Spline Modeling -- Multivariate Adaptive Regression Spline Modeling in SAS -- Adaptive Regression Modeling Formulation. . 
520 |a This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes. The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book’s Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. Provides insight into modeling of nonlinear relationships and also justifications for when to use them, thereby providing novel insights about relationships Addresses not only adaptive generation of additive models but also of models based on nonlinear interactions Discusses adaptive modeling of variances/dispersions as well as of means Highlights both univariate and multivariate outcomes, rather than solely univariate outcomes. 
650 0 |a Statistics. 
650 0 |a Biostatistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Biostatistics. 
700 1 |a Ding, Kai.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319339443 
830 0 |a Statistics for Biology and Health,  |x 1431-8776 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-33946-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)