Entropy Methods for Diffusive Partial Differential Equations

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptot...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jüngel, Ansgar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02862nam a22004935i 4500
001 978-3-319-34219-1
003 DE-He213
005 20160617044858.0
007 cr nn 008mamaa
008 160617s2016 gw | s |||| 0|eng d
020 |a 9783319342191  |9 978-3-319-34219-1 
024 7 |a 10.1007/978-3-319-34219-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Jüngel, Ansgar.  |e author. 
245 1 0 |a Entropy Methods for Diffusive Partial Differential Equations  |h [electronic resource] /  |c by Ansgar Jüngel. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 139 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1 Introduction -- 2 Fokker–Planck equations -- 3 Systematic Integration by Parts -- 4 Cross-Diffusion Systems -- 5 Towards Discrete Entropy Methods -- 6 Appendix A: Technical Tools. 
520 |a This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars. 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Difference and Functional Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319342184 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-34219-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)