Forecast Error Correction using Dynamic Data Assimilation

This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)—an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lakshmivarahan, Sivaramakrishnan (Συγγραφέας), Lewis, John M. (Συγγραφέας), Jabrzemski, Rafal (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Atmospheric Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Theory
  • Introduction
  • Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time
  • Estimation of control errors using forward sensitivities: FSM with single and multiple observations
  • Relation to adjoint sensitivity and impact of observation
  • Estimation of model errors using Pontryagin’s Maximum Principle- its relation to 4-D VAR and hence FSM
  • FSM and predictability - Lyapunov index
  • Part II Applications
  • Mixed-layer model - the Gulf of Mexico problem
  • Lagrangian data assimilation
  • Conclusions
  • Appendix
  • Index. .