Forecast Error Correction using Dynamic Data Assimilation
This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)—an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data as...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | Springer Atmospheric Sciences,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Theory
- Introduction
- Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time
- Estimation of control errors using forward sensitivities: FSM with single and multiple observations
- Relation to adjoint sensitivity and impact of observation
- Estimation of model errors using Pontryagin’s Maximum Principle- its relation to 4-D VAR and hence FSM
- FSM and predictability - Lyapunov index
- Part II Applications
- Mixed-layer model - the Gulf of Mexico problem
- Lagrangian data assimilation
- Conclusions
- Appendix
- Index. .