|
|
|
|
LEADER |
03432nam a22005175i 4500 |
001 |
978-3-319-41048-7 |
003 |
DE-He213 |
005 |
20160625104417.0 |
007 |
cr nn 008mamaa |
008 |
160625s2016 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319410487
|9 978-3-319-41048-7
|
024 |
7 |
|
|a 10.1007/978-3-319-41048-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC173.96-174.52
|
072 |
|
7 |
|a PHQ
|2 bicssc
|
072 |
|
7 |
|a SCI057000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.12
|2 23
|
100 |
1 |
|
|a Lewis-Swan, Robert J.
|e author.
|
245 |
1 |
0 |
|a Ultracold Atoms for Foundational Tests of Quantum Mechanics
|h [electronic resource] /
|c by Robert J. Lewis-Swan.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XVI, 156 p. 35 illus., 14 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
505 |
0 |
|
|a Introduction -- Background I: Physical Systems -- Background II: Phase-space Methods -- Proposal for Demonstrating the Hong-Ou-Mandel Effect with Matter Waves -- Proposal for a Motional-state Bell Inequality Test with Ultracold Atoms -- Sensitivity to Thermal Noise of Atomic Einstein-Podolsky-Rosen Entanglement -- An Atomic SU(1,1) Interferometer Via Spin-changing Collisions -- On the Relation of the Particle Number Distribution of Stochastic Wigner Trajectories and Experimental Realizations -- Conclusion. .
|
520 |
|
|
|a This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple “toy-models” often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics. .
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Quantum physics.
|
650 |
|
0 |
|a Phase transformations (Statistical physics).
|
650 |
|
0 |
|a Condensed materials.
|
650 |
|
0 |
|a Condensed matter.
|
650 |
|
0 |
|a Quantum computers.
|
650 |
|
0 |
|a Spintronics.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Quantum Physics.
|
650 |
2 |
4 |
|a Quantum Information Technology, Spintronics.
|
650 |
2 |
4 |
|a Quantum Gases and Condensates.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319410470
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-41048-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|