Support Vector Machines and Perceptrons Learning, Optimization, Classification, and Application to Social Networks /

This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Murty, M.N (Συγγραφέας), Raghava, Rashmi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02951nam a22005415i 4500
001 978-3-319-41063-0
003 DE-He213
005 20171011141217.0
007 cr nn 008mamaa
008 160816s2016 gw | s |||| 0|eng d
020 |a 9783319410630  |9 978-3-319-41063-0 
024 7 |a 10.1007/978-3-319-41063-0  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
100 1 |a Murty, M.N.  |e author. 
245 1 0 |a Support Vector Machines and Perceptrons  |h [electronic resource] :  |b Learning, Optimization, Classification, and Application to Social Networks /  |c by M.N. Murty, Rashmi Raghava. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 95 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
520 |a This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>. 
650 0 |a Computer science. 
650 0 |a Computer system failures. 
650 0 |a Algorithms. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
650 2 4 |a System Performance and Evaluation. 
700 1 |a Raghava, Rashmi.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319410623 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-41063-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)