Search and Optimization by Metaheuristics Techniques and Algorithms Inspired by Nature /

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Du, Ke-Lin (Συγγραφέας), Swamy, M. N. S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04227nam a22005295i 4500
001 978-3-319-41192-7
003 DE-He213
005 20160720101518.0
007 cr nn 008mamaa
008 160720s2016 gw | s |||| 0|eng d
020 |a 9783319411927  |9 978-3-319-41192-7 
024 7 |a 10.1007/978-3-319-41192-7  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PDE  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Du, Ke-Lin.  |e author. 
245 1 0 |a Search and Optimization by Metaheuristics  |h [electronic resource] :  |b Techniques and Algorithms Inspired by Nature /  |c by Ke-Lin Du, M. N. S. Swamy. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XXI, 434 p. 68 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Simulated Annealing -- Optimization by Recurrent Neural Networks -- Genetic Algorithms and Genetic Programming -- Evolutionary Strategies -- Differential Evolution -- Estimation of Distribution Algorithms -- Mimetic Algorithms -- Topics in EAs -- Particle Swarm Optimization -- Artificial Immune Systems -- Ant Colony Optimization -- Tabu Search and Scatter Search -- Bee Metaheuristics -- Harmony Search -- Biomolecular Computing -- Quantum Computing -- Other Heuristics-Inspired Optimization Methods -- Dynamic, Multimodal, and Constraint-Satisfaction Optimizations -- Multiobjective Optimization -- Appendix 1: Discrete Benchmark Functions -- Appendix 2: Test Functions -- Index. 
520 |a This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods. 
650 0 |a Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Algorithms. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Computational intelligence. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Algorithms. 
650 2 4 |a Optimization. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Computational Intelligence. 
700 1 |a Swamy, M. N. S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319411910 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-41192-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)