An Introduction to Special Functions

The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric fu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Viola, Carlo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:UNITEXT, 102
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02864nam a22005175i 4500
001 978-3-319-41345-7
003 DE-He213
005 20161102092502.0
007 cr nn 008mamaa
008 161102s2016 gw | s |||| 0|eng d
020 |a 9783319413457  |9 978-3-319-41345-7 
024 7 |a 10.1007/978-3-319-41345-7  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Viola, Carlo.  |e author. 
245 1 3 |a An Introduction to Special Functions  |h [electronic resource] /  |c by Carlo Viola. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 168 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 ;  |v 102 
505 0 |a 1 Picard’s Theorems -- 2 The Weierstrass Factorization Theorem -- 3 Entire Functions of Finite Order -- 4 Bernoulli Numbers and Polynomials -- 5 Summation Formulae -- 6 The Euler Gamma-Function -- 7 Linear Differential Equations -- 8 Hypergeometric Functions. 
520 |a The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function. Such special functions are indispensable tools in "higher calculus" and are frequently encountered in almost all branches of pure and applied mathematics. The only knowledge assumed on the part of the reader is an understanding of basic concepts to the level of an elementary course covering the residue theorem, Cauchy's integral formula, the Taylor and Laurent series expansions, poles and essential singularities, branch points, etc. The book addresses the needs of advanced undergraduate and graduate students in mathematics or physics. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Functions of real variables. 
650 0 |a Special functions. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Special Functions. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319413440 
830 0 |a UNITEXT,  |x 2038-5714 ;  |v 102 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-41345-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)