Matrix and Tensor Factorization Techniques for Recommender Systems
This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factoriz...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | SpringerBriefs in Computer Science,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Matrix Factorization Techniques
- 1. Introduction
- 2. Related Work on Matrix Factorization
- 3. Performing SVD on matrices and its Extensions
- 4. Experimental Evaluation on Matrix Decomposition Methods
- Part II Tensor Factorization Techniques
- 5. Related Work on Tensor Factorization
- 6. HOSVD on Tensors and its Extensions
- 7. Experimental Evaluation on Tensor Decomposition Methods
- 8 Conclusions and Future Work.