Matrix and Tensor Factorization Techniques for Recommender Systems

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factoriz...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Symeonidis, Panagiotis (Συγγραφέας), Zioupos, Andreas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Matrix Factorization Techniques
  • 1. Introduction
  • 2. Related Work on Matrix Factorization
  • 3. Performing SVD on matrices and its Extensions
  • 4. Experimental Evaluation on Matrix Decomposition Methods
  • Part II Tensor Factorization Techniques
  • 5. Related Work on Tensor Factorization
  • 6. HOSVD on Tensors and its Extensions
  • 7. Experimental Evaluation on Tensor Decomposition Methods
  • 8 Conclusions and Future Work.