Geometric Properties for Parabolic and Elliptic PDE's GPPEPDEs, Palinuro, Italy, May 2015 /

This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gazzola, Filippo (Επιμελητής έκδοσης), Ishige, Kazuhiro (Επιμελητής έκδοσης), Nitsch, Carlo (Επιμελητής έκδοσης), Salani, Paolo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Proceedings in Mathematics & Statistics, 176
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04684nam a22005775i 4500
001 978-3-319-41538-3
003 DE-He213
005 20160808135505.0
007 cr nn 008mamaa
008 160808s2016 gw | s |||| 0|eng d
020 |a 9783319415383  |9 978-3-319-41538-3 
024 7 |a 10.1007/978-3-319-41538-3  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Geometric Properties for Parabolic and Elliptic PDE's  |h [electronic resource] :  |b GPPEPDEs, Palinuro, Italy, May 2015 /  |c edited by Filippo Gazzola, Kazuhiro Ishige, Carlo Nitsch, Paolo Salani. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 288 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 176 
505 0 |a 1 Angela Alberico, Giuseppina di Blasio and Filomena Feo: Estimates for solutions to anisotropic elliptic equations with zero order term -- 2 Vieri Benci and Lorenzo Luperi Baglini: A topological approach to non-Archimedean Mathematics -- 3 Chiara Bianchini and Giulio Ciraolo: A note on an overdetermined problem for the capacitary potential -- 4 Lorenzo Brasco and Filippo Santambrogio: Poincar´e inequalities on convex sets by Optimal Transport methods -- 5 Davide Buoso: Analyticity and criticality results for the eigenvalues of the biharmonic operator -- 6 Giulio Ciraolo and Luigi Vezzoni: A remark on an overdetermined problem in Riemannian Geometry -- 7 Norisuke Ioku and Michinori Ishiwata: A note on the scale invariant structure of critical Hardy inequalities -- 8 Yoshihito Kohsaka: Stability analysis of Delaunay surfaces as steady states for the surface diffusion equation -- 9 Rolando Magnanini and Giorgio Poggesi: Littlewood’s fourth principle -- 10 Kazuhiro Ishige and Kazushige Nakagawa: The Phragmèn-Lindelöf theorem for a fully nonlinear elliptic problem with a dynamical boundary condition -- 11 Saori Nakamori and Kazuhiro Takimoto: Entire solutions to generalized parabolic k-Hessian equations -- 12 Kurumi Hiruko and Shinya Okabe: Dynamical aspects of a hybrid system describing intermittent androgen suppression therapy of prostate cancer -- 13 Shigeru Sakaguchi: Symmetry problems on stationary isothermic surfaces in Euclidean spaces -- 14 Megumi Sano and Futoshi Takahashi: Improved Rellich type inequalities in RN -- 15 Jin Takahashi: Solvability of a Semilinear Parabolic Equation with Measures as Initial Data -- 16 Jann-Long Chern and Eiji Yanagida: Singular Solutions of the Scalar Field Equation with a Critical Exponent. 
520 |a This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions. . 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Convex and Discrete Geometry. 
700 1 |a Gazzola, Filippo.  |e editor. 
700 1 |a Ishige, Kazuhiro.  |e editor. 
700 1 |a Nitsch, Carlo.  |e editor. 
700 1 |a Salani, Paolo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319415369 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 176 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-41538-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)