Big and Complex Data Analysis Methodologies and Applications /

This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essent...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ahmed, S. Ejaz (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Contributions to Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04422nam a22005055i 4500
001 978-3-319-41573-4
003 DE-He213
005 20170321142104.0
007 cr nn 008mamaa
008 170321s2017 gw | s |||| 0|eng d
020 |a 9783319415734  |9 978-3-319-41573-4 
024 7 |a 10.1007/978-3-319-41573-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Big and Complex Data Analysis  |h [electronic resource] :  |b Methodologies and Applications /  |c edited by S. Ejaz Ahmed. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 386 p. 85 illus., 55 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions to Statistics,  |x 1431-1968 
505 0 |a Preface -- Introduction -- Unsupervised Bump Hunting Using Principal Components -- Statistical Process Control Charts as a Tool for Analyzing Big Data -- Empirical Likelihood Test for High Dimensional Generalized Linear Models -- Identifying gene-environment interactions associated with prognosis using penalized quantile regression -- A Computationally Efficient Approach for Modeling Complex and Big Survival Data -- Regularization after marginal learning for ultra-high dimensional regression models -- Tests of concentration for low-dimensional and high-dimensional directional data -- Random Projections For Large-Scale Regression -- How Different are Estimated Genetic Networks of Cancer Subtypes? -- Analysis of correlated data with error-prone response under generalized linear mixed models -- High-Dimensional Classification for Brain Decoding -- Optimal shrinkage estimation in heteroscedastic hierarchical linear models -- Bias-reduced moment estimators of Population Spectral Distribution and their applications -- Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values -- A Mixture of Variance-Gamma Factor Analyzers -- Fast Community Detection in Complex Networks with a K-Depths Classifier. 
520 |a This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers. 
650 0 |a Statistics. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Biostatistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Biostatistics. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Ahmed, S. Ejaz.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319415727 
830 0 |a Contributions to Statistics,  |x 1431-1968 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-41573-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)