Big and Complex Data Analysis Methodologies and Applications /

This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essent...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ahmed, S. Ejaz (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Contributions to Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Introduction
  • Unsupervised Bump Hunting Using Principal Components
  • Statistical Process Control Charts as a Tool for Analyzing Big Data
  • Empirical Likelihood Test for High Dimensional Generalized Linear Models
  • Identifying gene-environment interactions associated with prognosis using penalized quantile regression
  • A Computationally Efficient Approach for Modeling Complex and Big Survival Data
  • Regularization after marginal learning for ultra-high dimensional regression models
  • Tests of concentration for low-dimensional and high-dimensional directional data
  • Random Projections For Large-Scale Regression
  • How Different are Estimated Genetic Networks of Cancer Subtypes?
  • Analysis of correlated data with error-prone response under generalized linear mixed models
  • High-Dimensional Classification for Brain Decoding
  • Optimal shrinkage estimation in heteroscedastic hierarchical linear models
  • Bias-reduced moment estimators of Population Spectral Distribution and their applications
  • Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values
  • A Mixture of Variance-Gamma Factor Analyzers
  • Fast Community Detection in Complex Networks with a K-Depths Classifier.