Optimization and Its Applications in Control and Data Sciences In Honor of Boris T. Polyak’s 80th Birthday /

This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Rus...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Goldengorin, Boris (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Optimization and Its Applications, 115
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction: Big, Small, and Optimal Steps of Boris Polyak (Boris Goldengorin)
  • A Convex Optimization Approach to Modeling of Stationary Periodic Time Series (Anders Lindquist and Giorgio Picci)
  • New two-phase proximal method of solving the solving the problem of equilibrium programming (Sergey I. Lyashko and Vladimir V. Semenov)
  • Minimax Control of Positive Switching Systems with Markovian Jumps (Patrizio Colaneri, José Geromel, Paolo Bolzern, Grace Deaecto)
  • A modified Polak-Ribière-Polyak conjugate gradient algorithm with sufficient descent and conjugacy properties for unconstrained optimization (Neculai Andrei)
  • Subgradient method with the transformation of space and Polyak's step (Petro Stetsyuk)
  • Invariance Conditions for Nonlinear Dynamical Systems (Y. Song, and T. Terlaky)
  • Nonparametric ellipsoidal approximation of compact sets of random points (S. I., Lyashko, V.V. Semenov D.A. Klyushin, M.V. Prysyazhna, M.P. Shlykov)
  • Algorithmic Principle of the Least Excessive Revenue for finding market equilibria (Yurii Nesterov, Vladimir Shikhman)
  • Matrix-Free Convex Optimization Modeling (Stephen Boyd and Steven Diamond)
  • Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces the Stochastic Quasi-Gradient Methods (Vladimir I. Norkin). .