Stability Theory for Dynamic Equations on Time Scales

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The secon...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Martynyuk, Anatoly A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Systems & Control: Foundations & Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03285nam a22004815i 4500
001 978-3-319-42213-8
003 DE-He213
005 20160922121934.0
007 cr nn 008mamaa
008 160922s2016 gw | s |||| 0|eng d
020 |a 9783319422138  |9 978-3-319-42213-8 
024 7 |a 10.1007/978-3-319-42213-8  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Martynyuk, Anatoly A.  |e author. 
245 1 0 |a Stability Theory for Dynamic Equations on Time Scales  |h [electronic resource] /  |c by Anatoly A. Martynyuk. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XI, 223 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Systems & Control: Foundations & Applications,  |x 2324-9749 
505 0 |a Contents -- Preface -- 1 Elements of Time Scales Analysis -- 2 Method of Dynamic Integral Inequalities -- 3 Lyapunov Theory for Dynamic Equations -- 4 Comparison Method -- 5 Applications -- References. 
520 |a This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.” Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Systems Theory, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319422121 
830 0 |a Systems & Control: Foundations & Applications,  |x 2324-9749 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42213-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)