What is the Genus?

Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Popescu-Pampu, Patrick (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Mathematics, 2162
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02558nam a22005055i 4500
001 978-3-319-42312-8
003 DE-He213
005 20160826164600.0
007 cr nn 008mamaa
008 160826s2016 gw | s |||| 0|eng d
020 |a 9783319423128  |9 978-3-319-42312-8 
024 7 |a 10.1007/978-3-319-42312-8  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
100 1 |a Popescu-Pampu, Patrick.  |e author. 
245 1 0 |a What is the Genus?  |h [electronic resource] /  |c by Patrick Popescu-Pampu. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 184 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2162 
520 |a Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in analysis, algebraic geometry, number theory and topology is emphasized through many theorems. Almost every chapter is organized around excerpts from a research paper in which a new perspective was brought on the genus or on one of the objects to which this notion applies. The author was motivated by the belief that a subject may best be understood and communicated by studying its broad lines of development, feeling the way one arrives at the definitions of its fundamental notions, and appreciating the amount of effort spent in order to explore its phenomena. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a History. 
650 0 |a Algebraic topology. 
650 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Mathematics Education. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319423111 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2162 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42312-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)