The Structure and Stability of Persistence Modules

This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chazal, Frédéric (Συγγραφέας), de Silva, Vin (Συγγραφέας), Glisse, Marc (Συγγραφέας), Oudot, Steve (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02720nam a22005295i 4500
001 978-3-319-42545-0
003 DE-He213
005 20161008174325.0
007 cr nn 008mamaa
008 161008s2016 gw | s |||| 0|eng d
020 |a 9783319425450  |9 978-3-319-42545-0 
024 7 |a 10.1007/978-3-319-42545-0  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Chazal, Frédéric.  |e author. 
245 1 4 |a The Structure and Stability of Persistence Modules  |h [electronic resource] /  |c by Frédéric Chazal, Vin de Silva, Marc Glisse, Steve Oudot. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 120 p. 17 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- Persistence Modules -- Rectangle Measures -- Interleaving -- The Isometry Theorem -- Variations -- References -- Index. 
520 |a This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Algebra. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a de Silva, Vin.  |e author. 
700 1 |a Glisse, Marc.  |e author. 
700 1 |a Oudot, Steve.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319425436 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42545-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)