Periodic Flows to Chaos in Time-delay Systems

This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal res...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Luo, Albert C. J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Nonlinear Systems and Complexity, 16
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02862nam a22004695i 4500
001 978-3-319-42664-8
003 DE-He213
005 20160917083511.0
007 cr nn 008mamaa
008 160917s2017 gw | s |||| 0|eng d
020 |a 9783319426648  |9 978-3-319-42664-8 
024 7 |a 10.1007/978-3-319-42664-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Luo, Albert C. J.  |e author. 
245 1 0 |a Periodic Flows to Chaos in Time-delay Systems  |h [electronic resource] /  |c by Albert C. J. Luo. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 198 p. 30 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonlinear Systems and Complexity,  |x 2195-9994 ;  |v 16 
505 0 |a Linear Time-delay Systems -- Nonlinear Time-delay System -- Periodic Flows in Time-delay Systems -- Quasiperiodic Flows in Time-delay Systems -- Time-delay Duffing Oscillator. 
520 |a This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains procedures for determining stability, bifurcation and chaos. 
650 0 |a Engineering. 
650 0 |a System theory. 
650 0 |a Complexity, Computational. 
650 1 4 |a Engineering. 
650 2 4 |a Complexity. 
650 2 4 |a Complex Systems. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319426631 
830 0 |a Nonlinear Systems and Complexity,  |x 2195-9994 ;  |v 16 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42664-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)