Cool Math for Hot Music A First Introduction to Mathematics for Music Theorists /

This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way:...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mazzola, Guerino (Συγγραφέας), Mannone, Maria (Συγγραφέας), Pang, Yan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Computational Music Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03630nam a22005775i 4500
001 978-3-319-42937-3
003 DE-He213
005 20171128141445.0
007 cr nn 008mamaa
008 161026s2016 gw | s |||| 0|eng d
020 |a 9783319429373  |9 978-3-319-42937-3 
024 7 |a 10.1007/978-3-319-42937-3  |2 doi 
040 |d GrThAP 
050 4 |a NX260 
072 7 |a H  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a ART000000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Mazzola, Guerino.  |e author. 
245 1 0 |a Cool Math for Hot Music  |h [electronic resource] :  |b A First Introduction to Mathematics for Music Theorists /  |c by Guerino Mazzola, Maria Mannone, Yan Pang. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 323 p. 179 illus., 112 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0305 
505 0 |a Part I: Introduction and Short History -- The ‘Counterpoint’ of Mathematics and Music -- Short History of the Relationship Between Mathematics and Music -- Part II: Sets and Functions -- The Architecture of Sets -- Functions and Relations -- Universal Properties -- Part III: Numbers -- Natural Numbers -- Recursion -- Natural Arithmetic -- Euclid and Normal Forms -- Integers -- Rationals -- Real Numbers -- Roots, Logarithms, and Normal Forms -- Complex Numbers -- Part IV: Graphs and Nerves -- Directed and Undirected Graphs -- Nerves -- Part V: Monoids and Groups -- Monoids -- Groups -- Group Actions, Subgroups, Quotients, and Products -- Permutation Groups -- The Third Torus and Counterpoint -- Coltrane’s Giant Steps -- Modulation Theory -- Part VI: Rings and Modules -- Rings and Fields -- Primes -- Matrices -- Modules -- Just Tuning -- Categories -- Part VII: Continuity and Calculus -- Continuity -- Differentiability -- Performance -- Gestures -- Part VIII: Solutions, References, Index -- Solutions of Exercises -- References -- Index. 
520 |a This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions. 
650 0 |a Computer science. 
650 0 |a Music. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Appl. in Arts and Humanities. 
650 2 4 |a Music. 
650 2 4 |a Mathematics in Music. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Mannone, Maria.  |e author. 
700 1 |a Pang, Yan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319429359 
830 0 |a Computational Music Science,  |x 1868-0305 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42937-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)