Recent Advances in Evolutionary Multi-objective Optimization

This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas con...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bechikh, Slim (Επιμελητής έκδοσης), Datta, Rituparna (Επιμελητής έκδοσης), Gupta, Abhishek (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Adaptation, Learning, and Optimization, 20
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03509nam a22004815i 4500
001 978-3-319-42978-6
003 DE-He213
005 20160809175225.0
007 cr nn 008mamaa
008 160809s2017 gw | s |||| 0|eng d
020 |a 9783319429786  |9 978-3-319-42978-6 
024 7 |a 10.1007/978-3-319-42978-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Recent Advances in Evolutionary Multi-objective Optimization  |h [electronic resource] /  |c edited by Slim Bechikh, Rituparna Datta, Abhishek Gupta. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 179 p. 42 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 20 
505 0 |a Multi-objective Optimization: Classical and Evolutionary Approaches -- Dynamic Multi-objective Optimization using Evolutionary Algorithms: A Survey -- Evolutionary Bilevel Optimization: An Introduction and Recent Advances -- Many-objective Optimization using Evolutionary Algorithms: A Survey -- On the Emerging Notion of Evolutionary Multitasking: A Computational Analog of Cognitive Multitasking -- Practical Applications in Constrained Evolutionary Multi-objective Optimization. 
520 |a This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Bechikh, Slim.  |e editor. 
700 1 |a Datta, Rituparna.  |e editor. 
700 1 |a Gupta, Abhishek.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319429779 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 20 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-42978-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)