Deep Learning and Convolutional Neural Networks for Medical Image Computing Precision Medicine, High Performance and Large-Scale Datasets /

This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural netw...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lu, Le (Επιμελητής έκδοσης), Zheng, Yefeng (Επιμελητής έκδοσης), Carneiro, Gustavo (Επιμελητής έκδοσης), Yang, Lin (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Review
  • Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective
  • Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis
  • Part II: Detection and Localization
  • Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation
  • Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning
  • Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set
  • Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers
  • Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning
  • Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging
  • Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel
  • Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition
  • Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging
  • Part III: Segmentation
  • Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference
  • Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms
  • Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context
  • Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders
  • Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling
  • Part IV: Big Dataset and Text-Image Deep Mining
  • Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database.