Artificial Neural Networks A Practical Course /

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of im...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: da Silva, Ivan Nunes (Συγγραφέας), Hernane Spatti, Danilo (Συγγραφέας), Andrade Flauzino, Rogerio (Συγγραφέας), Liboni, Luisa Helena Bartocci (Συγγραφέας), dos Reis Alves, Silas Franco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • PART I – Neural Networks Architectures and Their Theoretical Aspects
  • Architectures of Artificial Neural Networks and Training Processes
  • Perceptron Network and Learning Rule
  • Adaline Network and Delta Rule
  • Multilayer Perceptron (MLP)
  • Radial Basis Function (RBF)
  • Recurrent Neural Topologies and Hopfield Network
  • Self-Organizing Maps and Kohonen Network
  • Learning Vector Quantization (LVQ) and Counter-Propagation Network
  • Adaptive Resonance Theory (ART)
  • Part II – Artificial Neural Networks Applications in Problems of Engineering and Applied Sciences
  • Coffee Global Quality Estimation Using Multilayer Perceptron
  • Computer Network Traffic Analysis Using SNMP Protocol and LVQ Network
  • Forecasting Stock Market Trends Using Recurrent Network
  • System for Disease Diagnosis Using ART Network
  • Adulterants Patterns Identification in Coffee Powder Using Self-Organizing Maps
  • Disturbances Recognition Related to Electrical Power Quality Using PMC Network
  • Mobile Robot Trajectory Control Using Fuzzy System and MLP Network
  • Method to Tomatoes Classification Using Computer Vision and MLP Network
  • Analysis of RBF and MLP Network Performance in Pattern Classification Problems
  • Solving Constrained Optimization Problems Using Hopfield Network
  • Conclusion.