An Introduction to Transfer Entropy Information Flow in Complex Systems /

This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present informa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bossomaier, Terry (Συγγραφέας), Barnett, Lionel (Συγγραφέας), Harré, Michael (Συγγραφέας), Lizier, Joseph T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03058nam a22005895i 4500
001 978-3-319-43222-9
003 DE-He213
005 20161115150312.0
007 cr nn 008mamaa
008 161115s2016 gw | s |||| 0|eng d
020 |a 9783319432229  |9 978-3-319-43222-9 
024 7 |a 10.1007/978-3-319-43222-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Bossomaier, Terry.  |e author. 
245 1 3 |a An Introduction to Transfer Entropy  |h [electronic resource] :  |b Information Flow in Complex Systems /  |c by Terry Bossomaier, Lionel Barnett, Michael Harré, Joseph T. Lizier. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIX, 190 p. 24 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Statistical Preliminaries -- Information Theory -- Transfer Entropy -- Information Transfer in Canonical Systems -- Information Transfer in Financial Markets -- Miscellaneous Applications of Transfer Entropy -- Concluding Remarks. 
520 |a This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering. 
650 0 |a Computer science. 
650 0 |a Neurosciences. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Complex Systems. 
650 2 4 |a Neurosciences. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
700 1 |a Barnett, Lionel.  |e author. 
700 1 |a Harré, Michael.  |e author. 
700 1 |a Lizier, Joseph T.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319432212 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-43222-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)