The Monge-Ampère Equation

Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gutiérrez, Cristian E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Έκδοση:2nd ed. 2016.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications, 89
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03509nam a22004935i 4500
001 978-3-319-43374-5
003 DE-He213
005 20170413061531.0
007 cr nn 008mamaa
008 161022s2016 gw | s |||| 0|eng d
020 |a 9783319433745  |9 978-3-319-43374-5 
024 7 |a 10.1007/978-3-319-43374-5  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Gutiérrez, Cristian E.  |e author. 
245 1 4 |a The Monge-Ampère Equation  |h [electronic resource] /  |c by Cristian E. Gutiérrez. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XIV, 216 p. 6 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 89 
505 0 |a Generalized Solutions to Monge-Ampère Equations -- Uniformly Elliptic Equations in Nondivergence Form -- The Cross-sections of Monge-Ampère -- Convex Solutions of detDu=1 in R<i>n -- Regularity Theory for the Monge-Ampère Equation -- W^2,p Estimates for the Monge-Ampère Equation -- The Linearized Monge-Ampère Equation -- Interior Hölder Estimates for Second Derivatives -- References -- Index. 
520 |a Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319433721 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 89 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-43374-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)