Topology and Geometric Group Theory Ohio State University, Columbus, USA, 2010–2011 /
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohi...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Springer Proceedings in Mathematics & Statistics,
184 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1.Arthur Bartels: On proofs of the Farrell-Jones Conjecture
- 2.Daniel Juan-Pineda and Luis Jorge Sanchez Saldana: The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups
- 3.Craig Guilbault: Ends, shapes, and boundaries in manifold topology and geometric group theory
- 4.Daniel Farley: A proof of Sageev’s Theorem on hyperplanes in CAT(0) cubical complexes
- 5.Pierre-Emmanuel Caprace and Bertrand Remy: Simplicity of twin tree lattices with non-trivial commutation relations
- 6.Peter Kropholler: Groups with many finitary cohomology functors.