Representation Theory of Finite Monoids
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area....
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- List of Figures
- Introduction
- I. Elements of Monoid Theory
- 1. The Structure Theory of Finite Monoids
- 2. R-trivial Monoids
- 3. Inverse Monoids
- II. Irreducible Representations
- 4. Recollement: The Theory of an Idempotent
- 5. Irreducible Representations
- III. Character Theory
- 6. Grothendieck Ring
- 7. Characters and Class Functions
- IV. The Representation Theory of Inverse Monoids
- 8. Categories and Groupoids
- 9. The Representation Theory of Inverse Monoids
- V. The Rhodes Radical
- 10. Bi-ideals and R. Steinberg's Theorem
- 11. The Rhodes Radical and Triangularizability
- VI. Applications
- 12. Zeta Functions of Languages and Dynamical Systems
- 13. Transformation Monoids
- 14. Markov Chains
- VII. Advanced Topics
- 15. Self-injective, Frobenius and Symmetric Algebras
- 16. Global Dimension
- 17. Quivers of Monoid Algebras
- 18. Further Developments
- A. Finite Dimensional Algebras
- B. Group Representation Theory
- C. Incidence Algebras and Möbius Inversion
- References
- Index of Notation
- Subject Index.