|
|
|
|
LEADER |
03351nam a22005415i 4500 |
001 |
978-3-319-44278-5 |
003 |
DE-He213 |
005 |
20160926175209.0 |
007 |
cr nn 008mamaa |
008 |
160926s2017 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319442785
|9 978-3-319-44278-5
|
024 |
7 |
|
|a 10.1007/978-3-319-44278-5
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TA1671-1707
|
050 |
|
4 |
|a TA1501-1820
|
072 |
|
7 |
|a TTBL
|2 bicssc
|
072 |
|
7 |
|a TEC019000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.36
|2 23
|
100 |
1 |
|
|a Schuster, Christian Stefano.
|e author.
|
245 |
1 |
0 |
|a Diffractive Optics for Thin-Film Silicon Solar Cells
|h [electronic resource] /
|c by Christian Stefano Schuster.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2017.
|
300 |
|
|
|a XX, 114 p. 56 illus., 11 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
505 |
0 |
|
|a Introduction -- Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells -- Fabrication and Characterisation of Diffractive Nanostructures -- Achievements -- Conclusions and Outlook.
|
520 |
|
|
|a This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses. .
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Energy harvesting.
|
650 |
|
0 |
|a Nanoscale science.
|
650 |
|
0 |
|a Nanoscience.
|
650 |
|
0 |
|a Nanostructures.
|
650 |
|
0 |
|a Optical materials.
|
650 |
|
0 |
|a Electronic materials.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Optics, Lasers, Photonics, Optical Devices.
|
650 |
2 |
4 |
|a Energy Harvesting.
|
650 |
2 |
4 |
|a Optical and Electronic Materials.
|
650 |
2 |
4 |
|a Nanoscale Science and Technology.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319442778
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-44278-5
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|