Diffractive Optics for Thin-Film Silicon Solar Cells

This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schuster, Christian Stefano (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03351nam a22005415i 4500
001 978-3-319-44278-5
003 DE-He213
005 20160926175209.0
007 cr nn 008mamaa
008 160926s2017 gw | s |||| 0|eng d
020 |a 9783319442785  |9 978-3-319-44278-5 
024 7 |a 10.1007/978-3-319-44278-5  |2 doi 
040 |d GrThAP 
050 4 |a TA1671-1707 
050 4 |a TA1501-1820 
072 7 |a TTBL  |2 bicssc 
072 7 |a TEC019000  |2 bisacsh 
082 0 4 |a 621.36  |2 23 
100 1 |a Schuster, Christian Stefano.  |e author. 
245 1 0 |a Diffractive Optics for Thin-Film Silicon Solar Cells  |h [electronic resource] /  |c by Christian Stefano Schuster. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XX, 114 p. 56 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells -- Fabrication and Characterisation of Diffractive Nanostructures -- Achievements -- Conclusions and Outlook. 
520 |a This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses. . 
650 0 |a Physics. 
650 0 |a Energy harvesting. 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 1 4 |a Physics. 
650 2 4 |a Optics, Lasers, Photonics, Optical Devices. 
650 2 4 |a Energy Harvesting. 
650 2 4 |a Optical and Electronic Materials. 
650 2 4 |a Nanoscale Science and Technology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319442778 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44278-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)