Grouping Genetic Algorithms Advances and Applications /

This book presents advances and innovations in grouping genetic algorithms, enriched with new and unique heuristic optimization techniques. These algorithms are specially designed for solving industrial grouping problems where system entities are to be partitioned or clustered into efficient groups...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mutingi, Michael (Συγγραφέας), Mbohwa, Charles (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 666
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04312nam a22005655i 4500
001 978-3-319-44394-2
003 DE-He213
005 20161004121502.0
007 cr nn 008mamaa
008 161004s2017 gw | s |||| 0|eng d
020 |a 9783319443942  |9 978-3-319-44394-2 
024 7 |a 10.1007/978-3-319-44394-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Mutingi, Michael.  |e author. 
245 1 0 |a Grouping Genetic Algorithms  |h [electronic resource] :  |b Advances and Applications /  |c by Michael Mutingi, Charles Mbohwa. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 243 p. 78 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 666 
505 0 |a Part I: Introduction -- Exploring Grouping Problems in Industry -- Complicating Features in Grouping Problems -- Part II: Grouping Genetic Algorithms -- Crouping Genetic Algorithms -- Fuzzy Grouping Genetic Algorithms -- Research Applications -- Fleet Size and Mix Vehicle Routing -- Heterogeneous Vehicle Routing -- Bin Packing: Container-Loading Problems with Compartments -- Homecare Staff Scheduling -- Task Assignment in Home Healthcare Services -- Nursing-Care Task Assignment -- Cell-Manufacturing Systems Design -- Cutting Stock Problem -- Assembly-Line Balancing -- Job-Shop Scheduling -- Equal Piles Problem -- Advertisement Allocation -- Part IV: Conclusions -- Concluding Remarks -- Further Research Considerations. 
520 |a This book presents advances and innovations in grouping genetic algorithms, enriched with new and unique heuristic optimization techniques. These algorithms are specially designed for solving industrial grouping problems where system entities are to be partitioned or clustered into efficient groups according to a set of guiding decision criteria. Examples of such problems are: vehicle routing problems, team formation problems, timetabling problems, assembly line balancing, group maintenance planning, modular design, and task assignment. A wide range of industrial grouping problems, drawn from diverse fields such as logistics, supply chain management, project management, manufacturing systems, engineering design and healthcare, are presented. Typical complex industrial grouping problems, with multiple decision criteria and constraints, are clearly described using illustrative diagrams and formulations. The problems are mapped into a common group structure that can conveniently be used as an input scheme to specific variants of grouping genetic algorithms. Unique heuristic grouping techniques are developed to handle grouping problems efficiently and effectively. Illustrative examples and computational results are presented in tables and graphs to demonstrate the efficiency and effectiveness of the algorithms. Researchers, decision analysts, software developers, and graduate students from various disciplines will find this in-depth reader-friendly exposition of advances and applications of grouping genetic algorithms an interesting, informative and valuable resource. 
650 0 |a Engineering. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Artificial intelligence. 
650 0 |a Management science. 
650 0 |a Computational intelligence. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Operations Research, Management Science. 
700 1 |a Mbohwa, Charles.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319443935 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 666 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44394-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)