Prognostics and Health Management of Engineering Systems An Introduction /

This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health...

Full description

Bibliographic Details
Main Authors: Kim, Nam-Ho (Author), An, Dawn (Author), Choi, Joo-Ho (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04127nam a22005655i 4500
001 978-3-319-44742-1
003 DE-He213
005 20161024165505.0
007 cr nn 008mamaa
008 161024s2017 gw | s |||| 0|eng d
020 |a 9783319447421  |9 978-3-319-44742-1 
024 7 |a 10.1007/978-3-319-44742-1  |2 doi 
040 |d GrThAP 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a SCI024000  |2 bisacsh 
082 0 4 |a 621.042  |2 23 
100 1 |a Kim, Nam-Ho.  |e author. 
245 1 0 |a Prognostics and Health Management of Engineering Systems  |h [electronic resource] :  |b An Introduction /  |c by Nam-Ho Kim, Dawn An, Joo-Ho Choi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 347 p. 166 illus., 155 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Tutorials for Prognostics -- Bayesian Statistics for Prognostics -- Physics-Based Prognostics -- Data-Driven Prognostics -- Study on Attributes of Prognostic Methods -- Applications of Prognostics. 
520 |a This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application. Among the many topics discussed in-depth are: • Prognostics tutorials using least-squares • Bayesian inference and parameter estimation • Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter • Data-driven prognostics algorithms including Gaussian process regression and neural network • Comparison of different prognostics algorithms The authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields. 
650 0 |a Engineering. 
650 0 |a Renewable energy resources. 
650 0 |a Aerospace engineering. 
650 0 |a Astronautics. 
650 0 |a Civil engineering. 
650 0 |a Renewable energy sources. 
650 0 |a Alternate energy sources. 
650 0 |a Green energy industries. 
650 0 |a Structural materials. 
650 1 4 |a Engineering. 
650 2 4 |a Renewable and Green Energy. 
650 2 4 |a Aerospace Technology and Astronautics. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Structural Materials. 
650 2 4 |a Civil Engineering. 
700 1 |a An, Dawn.  |e author. 
700 1 |a Choi, Joo-Ho.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319447407 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44742-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)