Mathematical Theory of Compressible Viscous Fluids Analysis and Numerics /

This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Feireisl, Eduard (Συγγραφέας), Karper, Trygve G. (Συγγραφέας), Pokorný, Milan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Advances in Mathematical Fluid Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03501nam a22005655i 4500
001 978-3-319-44835-0
003 DE-He213
005 20171111142932.0
007 cr nn 008mamaa
008 161126s2016 gw | s |||| 0|eng d
020 |a 9783319448350  |9 978-3-319-44835-0 
024 7 |a 10.1007/978-3-319-44835-0  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Feireisl, Eduard.  |e author. 
245 1 0 |a Mathematical Theory of Compressible Viscous Fluids  |h [electronic resource] :  |b Analysis and Numerics /  |c by Eduard Feireisl, Trygve G. Karper, Milan Pokorný. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XII, 186 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0320 
520 |a This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics.  Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.  . 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Numerical analysis. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Karper, Trygve G.  |e author. 
700 1 |a Pokorný, Milan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319448343 
830 0 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0320 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44835-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)