Optical Flow and Trajectory Estimation Methods

This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginn...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gibson, Joel (Συγγραφέας), Marques, Oge (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03170nam a22004695i 4500
001 978-3-319-44941-8
003 DE-He213
005 20160901141242.0
007 cr nn 008mamaa
008 160901s2016 gw | s |||| 0|eng d
020 |a 9783319449418  |9 978-3-319-44941-8 
024 7 |a 10.1007/978-3-319-44941-8  |2 doi 
040 |d GrThAP 
050 4 |a T385 
050 4 |a TA1637-1638 
050 4 |a TK7882.P3 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
100 1 |a Gibson, Joel.  |e author. 
245 1 0 |a Optical Flow and Trajectory Estimation Methods  |h [electronic resource] /  |c by Joel Gibson, Oge Marques. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 49 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Optical Flow Fundamentals -- Optical Flow and Trajectory Methods in Context -- Sparse Regularization of TV-L Optical Flow -- Robust Low Rank Trajectories. 
520 |a This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginning with a review of optical flow fundamentals, it discusses the commonly used flow estimation strategies and the advantages or shortcomings of each. The brief also introduces the concepts associated with sparsity including dictionaries and low rank matrices. Next, it provides context for optical flow and trajectory methods including algorithms, data sets, and performance measurement. The second half of the brief covers sparse regularization of total variation optical flow and robust low rank trajectories. The authors describe a new approach that uses partially-overlapping patches to accelerate the calculation and is implemented in a coarse-to-fine strategy. Experimental results show that combining total variation and a sparse constraint from a learned dictionary is more effective than employing total variation alone. The brief is targeted at researchers and practitioners in the fields of engineering and computer science. It caters particularly to new researchers looking for cutting edge topics in optical flow as well as veterans of optical flow wishing to learn of the latest advances in multi-frame methods. 
650 0 |a Computer science. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Marques, Oge.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319449401 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44941-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)