Two-Fluid Model Stability, Simulation and Chaos

This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bertodano, Martín López de (Συγγραφέας), Fullmer, William (Συγγραφέας), Clausse, Alejandro (Συγγραφέας), Ransom, Victor H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03633nam a22005895i 4500
001 978-3-319-44968-5
003 DE-He213
005 20161110141813.0
007 cr nn 008mamaa
008 161110s2017 gw | s |||| 0|eng d
020 |a 9783319449685  |9 978-3-319-44968-5 
024 7 |a 10.1007/978-3-319-44968-5  |2 doi 
040 |d GrThAP 
050 4 |a TK9001-9401 
072 7 |a THK  |2 bicssc 
072 7 |a TEC028000  |2 bisacsh 
082 0 4 |a 621.48  |2 23 
100 1 |a Bertodano, Martín López de.  |e author. 
245 1 0 |a Two-Fluid Model Stability, Simulation and Chaos  |h [electronic resource] /  |c by Martín López de Bertodano, William Fullmer, Alejandro Clausse, Victor H. Ransom. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XX, 358 p. 74 illus., 60 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fixed-Flux Model -- Two-Fluid Model -- Fixed-Flux Model Chaos -- Fixed-Flux Model -- Drift-Flux Model -- Drift-Flux Model Non-Linear Dynamics and Chaos -- RELAP5 Two-Fluid Model -- Two-Fluid Model CFD. 
520 |a This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter. The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are chaotic and Lyapunov stable. On the practical side, they also assess the regularization of an ill-posed one-dimensional TFM industrial code. Furthermore, the one-dimensional stability analyses are applied to obtain well-posed CFD TFMs that are either stable (RANS) or Lyapunov stable (URANS), with the focus on numerical convergence. 
650 0 |a Engineering. 
650 0 |a Nuclear energy. 
650 0 |a Chemical engineering. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Fluid mechanics. 
650 0 |a Nuclear engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Nuclear Engineering. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Industrial Chemistry/Chemical Engineering. 
650 2 4 |a Nuclear Energy. 
700 1 |a Fullmer, William.  |e author. 
700 1 |a Clausse, Alejandro.  |e author. 
700 1 |a Ransom, Victor H.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319449678 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-44968-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)