Algorithmic Advances in Riemannian Geometry and Applications For Machine Learning, Computer Vision, Statistics, and Optimization /

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Minh, Hà Quang (Επιμελητής έκδοσης), Murino, Vittorio (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03478nam a22005775i 4500
001 978-3-319-45026-1
003 DE-He213
005 20171009142001.0
007 cr nn 008mamaa
008 161005s2016 gw | s |||| 0|eng d
020 |a 9783319450261  |9 978-3-319-45026-1 
024 7 |a 10.1007/978-3-319-45026-1  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Algorithmic Advances in Riemannian Geometry and Applications  |h [electronic resource] :  |b For Machine Learning, Computer Vision, Statistics, and Optimization /  |c edited by Hà Quang Minh, Vittorio Murino. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 208 p. 55 illus., 51 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
520 |a This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Statistics. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Minh, Hà Quang.  |e editor. 
700 1 |a Murino, Vittorio.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319450254 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45026-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)