A Group Theoretic Approach to Quantum Information

This textbook is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for q...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hayashi, Masahito (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03578nam a22005055i 4500
001 978-3-319-45241-8
003 DE-He213
005 20161031120007.0
007 cr nn 008mamaa
008 161031s2017 gw | s |||| 0|eng d
020 |a 9783319452418  |9 978-3-319-45241-8 
024 7 |a 10.1007/978-3-319-45241-8  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Hayashi, Masahito.  |e author. 
245 1 2 |a A Group Theoretic Approach to Quantum Information  |h [electronic resource] /  |c by Masahito Hayashi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 228 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foundation of Quantum Theory -- Quantum Channel, Information Quantities, and Their Mathematical Structure -- Quantum Entanglement and Its Quantification -- Group Covariance and Optimal Information Processing -- Quantum Error Correcting Code and Its Application -- Universal Information Processings. 
520 |a This textbook is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory. 
650 0 |a Physics. 
650 0 |a Group theory. 
650 0 |a Quantum computers. 
650 0 |a Quantum physics. 
650 0 |a Spintronics. 
650 0 |a System safety. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Quantum Information Technology, Spintronics. 
650 2 4 |a Quantum Computing. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Security Science and Technology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319452395 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45241-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)