Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2014–2016 /

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimension...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Klartag, Bo'az (Επιμελητής έκδοσης), Milman, Emanuel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2169
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04872nam a22005175i 4500
001 978-3-319-45282-1
003 DE-He213
005 20170418111612.0
007 cr nn 008mamaa
008 170418s2017 gw | s |||| 0|eng d
020 |a 9783319452821  |9 978-3-319-45282-1 
024 7 |a 10.1007/978-3-319-45282-1  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
245 1 0 |a Geometric Aspects of Functional Analysis  |h [electronic resource] :  |b Israel Seminar (GAFA) 2014–2016 /  |c edited by Bo'az Klartag, Emanuel Milman. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 366 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2169 
505 0 |a Alesker, S.: On repeated sequential closures of constructible functions in valuations -- Ben-Efraim L., Milman, V., Segal, A.: Orbit point of view on some results of asymp-totic theory; Orbit type and cotype -- Bobkov, S. G., Nayar, P., Tetali, P.: Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions -- Bourgain, J.:On random walks in large compact Lie groups -- Bourgain, J.: On a problem of Farrell and Vershynin in random matrix theory. -- Colesanti, A., Lombardi, N.: Valutations on the space of quasi-concave functions -- Dafnis, N., Paouris, G.: An inequality for moments of log-concave functions on Gaus-sian random vectors -- Friedland, O., Yomdin, Y.:(s; p)-valent functions -- Gluskin, E. D., Ostrover, Y.: A remark on projections of the rotated cube to complex lines -- Guedon, O., Hinrichs, A., Litvak, A. E., Prochno, J.: On the expectation of operatornorms of random matrices -- Haviv, I., Regev, O.: The Restricted Isometry Property of Subsampled Fourier Ma-trices -- Huang, H., Wei, F.: Upper bound for the Dvoretzky dimension in Milman-Schechtman theorem -- Klartag, B.: Super-Gaussian directions of random vectors -- Koldobsky, A., Pajor, A.: A remark on measures of sections of Lp-balls -- Kolesnikov, A. V., Milman, E.: Sharp Poincare-type inequality for the Gaussian mea-sure on the boundary of convex sets -- Konig, H., Milman, V.: Rigidity of the chain rule and nearly submultiplicative functions -- Lata la, R., Matlak, D.: Royen's proof of the Gaussian correlation inequality -- Liaw, C., Mehrabian, A., Plan, Y., Vershynin, R.: A simple tool for bounding the deviation of random matrices on geometric sets -- Mendelson, S.: On multiplier processes under weak moment assumptions -- Milman, V., Rotem, L.: Characterizing the radial sum for star bodies -- Oleskiewicz, K.: On mimicking Rademacher sums in tail spaces -- Rossi, A., Salani, P.: Stability for Borell-Brascamp-Lieb inequalities.pan>. 
520 |a As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Klartag, Bo'az.  |e editor. 
700 1 |a Milman, Emanuel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319452814 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2169 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45282-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)